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ABSTRACT. We present a new approach to the problem of mutu-
ally unbiased bases (MUBs), based on positive definite functions
on the unitary group. The method provides a new proof of the fact
that there are at most d+1 MUBs in C?, and it may also lead to a
proof of non-existence of complete systems of MUBs in dimension
6 via a conjectured algebraic identity.
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1. INTRODUCTION

In this paper we present a new approach to the problem of mutually
unbiased bases (MUBs) in C¢. Our approach has been motivated by
two recent results in the literature. First, in [22] one of the present
authors described how the Fourier analytic formulation of Delsarte’s LP
bound can be applied to the problem of MUBs. Second, in [25, Theorem
2] F. M. Oliveira Filho and F. Vallentin proved a general optimization
bound which can be viewed as a generalization of Delsarte’s LP bound
to non-commutative settings (and they applied the theorem to packing
problems in Euclidean spaces). As the MUB-problem is essentially
a problem over the unitary group, it is natural to combine the two
ideas above. Here we present another version of the non-commutative
Delsarte scheme in the spirit of [22, Lemma 2.1]. Our formulation in
Theorem 2.3 below describes a less general setting than [25, Theorem
2], but it makes use of the underlying group structure and is very
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convenient for applications. It fits the MUB-problem naturally, and
leads us to consider positive definite functions on the unitary group.

The paper is organized as follows. In the Introduction we recall
some basic notions and results concerning mutually unbiased bases
(MUBSs). In Section 2 we describe a non-commutative version of Del-
sarte’s scheme in Theorem 2.3. We believe that this general scheme
will be useful for several other applications, too. We then apply the
method in Theorem 2.4 to give a new proof of the fact that there are
at most d +1 MUBs in C?. While the result itself has been proved
by other methods, we believe that this approach is particularly suited
for the MUB-problem and may lead to non-existence proofs in the fu-
ture. In particular, in Section 3 we speculate on how the non-existence
of complete systems of MUBs could be proved in dimension 6 via an
algebraic identity conjectured in [23].

Throughout the paper we follow the convention that inner products
are linear in the first variable and conjugate linear in the second.

Recall that two orthonormal bases in C¢, A = {ey,...,eq} and B =
1
{f1,...,£;} are called unbiased if for every 1 < j, k < d, |(e;, f;)| = —=.

Vd

A collection By, . .. B, of orthonormal bases is said to be (pairwise) mu-
tually unbiased if any two of them are unbiased. What is the maximal
number of mutually unbiased bases (MUBs) in C?? This problem has
its origins in quantum information theory, and has received consider-
able attention over the past decades (see e.g. [14] for a recent compre-
hensive survey on MUBs). The following upper bound is well-known
(see e.g. [1, 3, 31]):

Theorem 1.1. The number of mutually unbiased bases in C¢ is less
than or equal to d + 1.

We will give a new proof of this fact in Theorem 2.4 below. Another
important result concerns the existence of complete systems of MUBs
in prime-power dimensions (see e.g. [1, 11, 12, 18, 21, 31]).

Theorem 1.2. A collection of d+ 1 mutually unbiased bases (called a
complete system of MUBs) exists (and can be constructed explicitly) if
the dimension d is a prime or a prime-power.

However, if the dimension d = p{*...p3* is not a prime-power, very
little is known about the maximal number of MUBs. By a tensor
product construction it is easy to see that there are at least p]%- +1

MUBs in C¢ where p?j is the smallest of the prime-power divisors of
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d. One could be tempted to conjecture the maximal number of MUBs
always equals p?j + 1, but this is already known to be false: for some
specific square dimensions d = s? a construction of [30] yields more
MUBs than p?j + 1 (the construction is based on orthogonal Latin
squares). Another important phenomenon, proved in [29], is that the
maximal number of MUBs cannot be exactly d (it is either d + 1 or
strictly less than d).

The following basic problem remains open for all non-primepower
dimensions:

Problem 1.3. Does a complete system of d + 1 mutually unbiased
bases exist in C if d is not a prime-power?

For d = 6 it is widely believed among researchers that the answer
is negative, and the maximal number of MUBs is 3. The proof still
eludes us, however, despite considerable efforts over the past decade
3, 4, 5, 6, 19]. On the one hand, some infinite families of MUB-
triplets in C°® have been constructed [19, 32]. On the other hand,
numerical evidence strongly suggests that there exist no MUB-quartets
[5, 6, 8, 16, 32]. For non-primepower dimensions other than 6 we are
not aware of any well founded conjectures as to the exact maximal
number of MUBs.

It will also be important to recall the relationship between mutually
unbiased bases and compler Hadamard matrices. A d x d matrix H
is called a complex Hadamard matrix if all its entries have modulus 1
and \/iaH is unitary. Given a collection of MUBs By, ..., B, we may
regard the bases as unitary matrices Uy, ..., U, (with respect to some
fixed orthonormal basis), and the condition of the bases being pairwise
unbiased amounts to U;U; being a complex Hadamard matrix scaled
by a factor of \/ia for all i # j. That is, U;U; is a unitary matrix (which
is of course automatic) whose entries are all of absolute value

3=

A complete classification of MUBs up to dimension 5 (see [7]) is
based on the classification of complex Hadamard matrices (see [17]).
However, the classification of complex Hadamard matrices in dimension
6 is still out of reach despite recent efforts [2, 20, 24, 27, 28].

In this paper we will use the above connection of MUBs to com-
plex Hadamard matrices. In particular, we will describe a Delsarte
scheme for non-commutative groups in Theorem 2.3, and apply it on
the unitary group U(d) to the MUB-problem in Theorem 2.4.
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2. MUTUALLY UNBIASED BASES AND A NON-COMMUTATIVE
DELSARTE SCHEME

In this section we describe a non-commutative version of Delsarte’s
scheme, and show how the problem of mutually unbiased bases fit into
this scheme. The commutative analogue was described in [22].

Let G be a compact group, the group operation being multiplication
and the unit element being denoted by 1. We will denote the normal-
ized Haar measure on G by p. Let a symmetric subset A = A™! C G,
1 € A, be given. We think of A as the 'forbidden’ set. We would like
to determine the maximal cardinality of a set B = {by,...b,,} C G
such that all the quotients bj_lbk € A°U {1} (in other words, all quo-
tients avoid the forbidden set A). When G is commutative, some well-
known examples of this general scheme are present in coding theory
[13], sphere-packings [9], and sets avoiding square differences in num-
ber theory [26]. We will discuss the non-commutative case here.

Recall that the convolution of f, g € L'(G) is defined by f * g(z) =
[ F@)gly " z)duly).

Recall also the notion of positive definite functions on G. A function
h : G — C is called positive definite, if for any m and any collection
Uy, Uy € Gy and ¢y, ... ¢ € C we have Y07 h(u;  uy)ee; > 0.
When h is continuous, the following characterization is well-known.

Lemma 2.1. (cf. [15, Proposition 3.35]) If G is a compact group, and
h:G — C is a continuous function, the following are equivalent.

(i) h is of positive type, i.e.
(1) / (f* Hh =0

for all functions f € L*(G) (here f(z) = f(z~1))
(i1) h is positive definite

This statement is fully contained in the more general Proposition
3.35 in [15]. In fact, for compact groups Proposition 3.35 in [15] shows
that instead of L?*(G) the smaller class of continuous functions C'(G)
or the wider class of absolute integrable functions L!'(G) could also
be taken in (i). All these cases are equivalent, but for us it will be
convenient to use L?*(G) in the sequel. (It is also worth mentioning
here that if A is of positive type then it is automatically equal to a
continuous function almost everywhere — but we will not need this fact
in this paper.)
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We formulate another important property of positive definite func-
tions.

Lemma 2.2. Let G be a compact group and p the normalized Haar
measure on G. If h : G — C is a continuous positive definite function
then o = fG hdp > 0, and for any oy < « the function h — oy is
also positive definite. In other words, for any m and any collection

U, .Uy € G and ¢y, ..., ¢, € C we have
m m
(2) > h(u;Muy)ee; > al Y ol
ij=1 i=1

Proof. Let f € L*(G) and define a linear operator H : L*(G) — L*(G)
by

(Hf)(x) = / W) () duly).

As h is assumed to be positive definite, H is positive self-adjoint. Also,
writing 1 for the constant one function on G we have

Hl=al1, (H1,1)=a>0.

Let us use the notation 8 = [ f(y)du(y). We have the orthogonal
decomposition

f=pB1+fy, where fo L 1.

Using the invariance of the Haar measure and exchanging the order
of integration we have

(Hf,1) = /(Hf)(:v), 1(z)dpu(x) = /h(x)du(m) / fy)duly) = ap
Therefore,
aB =(Hf,1) = (H(B1+ fo),1) = af + (H fo, 1),

and hence (H fo,1) = 0.

To show that h — « is positive definite we need to check that

(HT,f) = |6]°a >0,
for all f € L?*(G). We have
(HF, f) = (Bal+ Hfo, 81+ fo) = |B]°a + (H fo, fo)

since fo L 1 and Hfy L 1. Hence (Hf, f) —|58]?a = (H fo, fo) > 0. O
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After these preliminaries we can describe the non-commutative ana-
logue of Delsarte’s LP bound. (To the best of our knowledge the com-
mutative version was first introduced by Delsarte in connection with
binary codes with prescribed Hamming distance [13]. Another formu-
lation of the non-commutative version is given in [25]).

Theorem 2.3. (Non-commutative Delsarte scheme for compact groups)
Let G be a compact group, p the normalized Haar measure, and let A =
ATV C G, 1€ A, be given. Assume that there exists a positive definite
function h: G — R such that h(z) <0 for all z € A°, and [ hdu > 0.
Then for any B = {by,...by} C G such that b;'b, € A°U {1} the

cardinality of B is bounded by |B| < %.

Proof. Consider
(3) S = Z h(u=tv).

u,wEB
On the one hand,
(4) S < h(1)|B],
since all the terms u # v are non-positive by assumption.

On the other hand, applying (2) with a = [ hdu, u,v € B and
Cy = ¢y, =1, we get

(5) S > a|B|*.

Comparing the two estimates (5), (4) we obtain |B| < %. O
The function h in the Theorem above is usually called a witness
function.

We will now describe how the problem of mutually unbiased bases fits
into this scheme. Consider the group U(d) of unitary matrices, being
given with respect to some fixed orthonormal basis of C?. Consider
the set CH of complex Hadamard matrices. Following the notation
of the Delsarte scheme above define A°¢ = JL&CH C U(d), i.e. let the
complement of the forbidden set be the set of scaled complex Hadamard
matrices. Then the maximal number of MUBs in C? is exactly the
maximal cardinality of a set B = {by,...b,,} C U(d) such that all
the quotients b;lbk € A°U{1}. After finding an appropriate witness
function we can now give a new proof of the fact the number of MUBs
in C? cannot exceed d + 1.
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Theorem 2.4. The function h(Z) = —1 + szzl |zi;|* (where Z =
(2i;)¢ w1 € U(d)) is positive definite on U(d), with h(1) = d —1 and
[h= d+1 Consequently, the number of MUBs in dimension d cannot
exceed d + 1.

Proof. Consider the function ho(Z) = ¢ =1 |2i4]*. First we prove that
hgo is positive definite. For this, recall that the Hilbert-Schmidt inner
product of matrices is defined as (X,Y) ;¢ = Tr (XY™), and for any
vector v in a finite dimensional Hilbert space H the (scaled) projection
operator P, is defined as P,u = (u,v)v. For any two vectors u,v € H
we have |[(u,v)[* = Tr P,P,. Also, recall that the inner product on
H® H is given by <U1 & U9, V1 X UQ> = <U1,Ul><u2, U2>.

Let Uy, ..., U, be unitary matrices, ci, ..., ¢, € C,and let {ey,... eq}
be the orthonormal basis with respect to which the matrices in U(d)
are given. Then

(6) [(U;Use;y, ek>\4 = [(Use;, Urek)]4 = |(Ue; @ Usej, Urep, @ Urek)IQ =

Tr PUt6j®Ut6]‘PUrek®Urek'
Therefore, with the notation Q; = Z;n:l Py,e,00,e, We have

(7) WU, = Z| (U*Ue;, )| = Tr QuQ, .
Finally,
(8) D UG =11 Y alilis > 0,
rit=1 t=1
as desired.
It is known [10] that the integral of hg on U(d) is m By applying

Lemma 2.2 to hy with ap = 1 < fho we get that h is also positive
definite. Note also that h vanishes on the set - C’H of scaled complex

Hadamard matrices, h(1) =d—1, and [ h = 2% +1 =41 +1 Therefore,
Theorem 2.3 implies that the number of MUBs in C? is less than or
equalto%:c%%l. O

We remark here that one could consider the witness functions hg =
ho—p forany 1 < g < d +1 All these functions satisfy the conditions of
Theorem 2.3. However, an easy calculation shows that the best bound
is achieved for g = 1.
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3. DIMENSION 6

The function h(Z) = -1 + Zijzl |z;.;]* in Theorem 2.4 was a fairly
natural candidate, as it vanishes on the set of (scaled) complex Hadamard
matrices \/LEC’H, for any d. Other such candidates are hy(Z) = — =+

Z?,j:1 |z j|** for any k > 2, but they give worse upper bounds than
h. Furthermore, Theorem 1.2 implies that the result of Theorem 2.4
is sharp whenever d is a prime-power, and hence we cannot hope to
construct better witness functions than h, in general. However, let us
examine the situation more closely in dimension d = 6, and discuss
why we hope that the non-existence of a complete system of MUBs
could be proved by this method.

For d = 6 we have other functions which are conjectured to vanish
on \/LECH . Namely, Conjecture 2.3 in [23] provides a selection of such
functions. Let

6
(9) mi(Z) = Y ) 2n(1)j7x(2).570(3).5 (0,5 5n(5) G 2 )5

w€Se j=1
where Sg denotes the permutation group on 6 elements. Also, let
ma(Z) = my(Z*). Then m; and my are real-valued (because each

term appears with its conjugate), and they are conjectured to vanish
on \/LECH . Furthermore, as the inner sum in (9) is conjectured to be

zero for all m € Sg, we may even multiply each term with (—1)%"" if
we wish. This leads to other possible choices of m; and ms.

We remark here that in higher even dimensions d = 8,10, ... the cor-
responding expressions do not vanish on the set of complex Hadamard
matrices. Therefore, the algebraic expression (9) is special to dimension
6, and provides some further natural candidates of witness functions
for the MUB-problem. Namely, let

m(Z) = F(mi(Z), ma(2)),

where F'(a, b) is a symmetric non-negative polynomial such that F(0,0) =
0 (e.g. F(a,b) = (a+ b)? a%?, etc.). In such a case m(I) = 0,
and fZeU(d) m(Z)du > 0. Therefore, if for any € > 0 the function
h(Z)+em(Z) is positive definite, we get a better bound than in Theo-
rem 2.4, and obtain that the number of MUBs in dimension 6 is strictly
less than 7, i.e. a complete system of MUBs does not exist. The ques-
tion is whether a suitable choice of F' and ¢ exist. This leads us to the
following general problem.
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Problem 3.1. Given a polynomial function f(Z) of the matriz ele-
ments z; ; and their conjugates z; ;, what is a necessary and sufficient
condition for f to be positive definite on the unitary group U(d)?

Finally, it would also be interesting to find any analogue of Conjec-
ture 2.3 in [23] for any dimensions other than d = 6.
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